Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Environ Int ; 187: 108712, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38714028

RESUMEN

BACKGROUND: Temperature variability (TV) is associated with increased mortality risk. However, it is still unknown whether intra-day or inter-day TV has different effects. OBJECTIVES: We aimed to assess the association of intra-day TV and inter-day TV with all-cause, cardiovascular, and respiratory mortality. METHODS: We collected data on total, cardiovascular, and respiratory mortality and meteorology from 758 locations in 47 countries or regions from 1972 to 2020. We defined inter-day TV as the standard deviation (SD) of daily mean temperatures across the lag interval, and intra-day TV as the average SD of minimum and maximum temperatures on each day. In the first stage, inter-day and intra-day TVs were modelled simultaneously in the quasi-Poisson time-series model for each location. In the second stage, a multi-level analysis was used to pool the location-specific estimates. RESULTS: Overall, the mortality risk due to each interquartile range [IQR] increase was higher for intra-day TV than for inter-day TV. The risk increased by 0.59% (95% confidence interval [CI]: 0.53, 0.65) for all-cause mortality, 0.64% (95% CI: 0.56, 0.73) for cardiovascular mortality, and 0.65% (95% CI: 0.49, 0.80) for respiratory mortality per IQR increase in intra-day TV0-7 (0.9 °C). An IQR increase in inter-day TV0-7 (1.6 °C) was associated with 0.22% (95% CI: 0.18, 0.26) increase in all-cause mortality, 0.44% (95% CI: 0.37, 0.50) increase in cardiovascular mortality, and 0.31% (95% CI: 0.21, 0.41) increase in respiratory mortality. The proportion of all-cause deaths attributable to intra-day TV0-7 and inter-day TV0-7 was 1.45% and 0.35%, respectively. The mortality risks varied by lag interval, climate area, season, and climate type. CONCLUSIONS: Our results indicated that intra-day TV may explain the main part of the mortality risk related to TV and suggested that comprehensive evaluations should be proposed in more countries to help protect human health.

2.
One Earth ; 7(2): 325-335, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38420618

RESUMEN

Short-term exposure to ground-level ozone in cities is associated with increased mortality and is expected to worsen with climate and emission changes. However, no study has yet comprehensively assessed future ozone-related acute mortality across diverse geographic areas, various climate scenarios, and using CMIP6 multi-model ensembles, limiting our knowledge on future changes in global ozone-related acute mortality and our ability to design targeted health policies. Here, we combine CMIP6 simulations and epidemiological data from 406 cities in 20 countries or regions. We find that ozone-related deaths in 406 cities will increase by 45 to 6,200 deaths/year between 2010 and 2014 and between 2050 and 2054, with attributable fractions increasing in all climate scenarios (from 0.17% to 0.22% total deaths), except the single scenario consistent with the Paris Climate Agreement (declines from 0.17% to 0.15% total deaths). These findings stress the need for more stringent air quality regulations, as current standards in many countries are inadequate.

3.
Environ Int ; 181: 108258, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37837748

RESUMEN

BACKGROUND: The epidemiological evidence on the interaction between heat and ambient air pollution on mortality is still inconsistent. OBJECTIVES: To investigate the interaction between heat and ambient air pollution on daily mortality in a large dataset of 620 cities from 36 countries. METHODS: We used daily data on all-cause mortality, air temperature, particulate matter ≤ 10 µm (PM10), PM ≤ 2.5 µm (PM2.5), nitrogen dioxide (NO2), and ozone (O3) from 620 cities in 36 countries in the period 1995-2020. We restricted the analysis to the six consecutive warmest months in each city. City-specific data were analysed with over-dispersed Poisson regression models, followed by a multilevel random-effects meta-analysis. The joint association between air temperature and air pollutants was modelled with product terms between non-linear functions for air temperature and linear functions for air pollutants. RESULTS: We analyzed 22,630,598 deaths. An increase in mean temperature from the 75th to the 99th percentile of city-specific distributions was associated with an average 8.9 % (95 % confidence interval: 7.1 %, 10.7 %) mortality increment, ranging between 5.3 % (3.8 %, 6.9 %) and 12.8 % (8.7 %, 17.0 %), when daily PM10 was equal to 10 or 90 µg/m3, respectively. Corresponding estimates when daily O3 concentrations were 40 or 160 µg/m3 were 2.9 % (1.1 %, 4.7 %) and 12.5 % (6.9 %, 18.5 %), respectively. Similarly, a 10 µg/m3 increment in PM10 was associated with a 0.54 % (0.10 %, 0.98 %) and 1.21 % (0.69 %, 1.72 %) increase in mortality when daily air temperature was set to the 1st and 99th city-specific percentiles, respectively. Corresponding mortality estimate for O3 across these temperature percentiles were 0.00 % (-0.44 %, 0.44 %) and 0.53 % (0.38 %, 0.68 %). Similar effect modification results, although slightly weaker, were found for PM2.5 and NO2. CONCLUSIONS: Suggestive evidence of effect modification between air temperature and air pollutants on mortality during the warm period was found in a global dataset of 620 cities.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ciudades , Calor , Dióxido de Nitrógeno/efectos adversos , Dióxido de Nitrógeno/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis
4.
Environ Int ; 174: 107825, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36934570

RESUMEN

BACKGROUND: Evidence on the potential interactive effects of heat and ambient air pollution on cause-specific mortality is inconclusive and limited to selected locations. OBJECTIVES: We investigated the effects of heat on cardiovascular and respiratory mortality and its modification by air pollution during summer months (six consecutive hottest months) in 482 locations across 24 countries. METHODS: Location-specific daily death counts and exposure data (e.g., particulate matter with diameters ≤ 2.5 µm [PM2.5]) were obtained from 2000 to 2018. We used location-specific confounder-adjusted Quasi-Poisson regression with a tensor product between air temperature and the air pollutant. We extracted heat effects at low, medium, and high levels of pollutants, defined as the 5th, 50th, and 95th percentile of the location-specific pollutant concentrations. Country-specific and overall estimates were derived using a random-effects multilevel meta-analytical model. RESULTS: Heat was associated with increased cardiorespiratory mortality. Moreover, the heat effects were modified by elevated levels of all air pollutants in most locations, with stronger effects for respiratory than cardiovascular mortality. For example, the percent increase in respiratory mortality per increase in the 2-day average summer temperature from the 75th to the 99th percentile was 7.7% (95% Confidence Interval [CI] 7.6-7.7), 11.3% (95%CI 11.2-11.3), and 14.3% (95% CI 14.1-14.5) at low, medium, and high levels of PM2.5, respectively. Similarly, cardiovascular mortality increased by 1.6 (95%CI 1.5-1.6), 5.1 (95%CI 5.1-5.2), and 8.7 (95%CI 8.7-8.8) at low, medium, and high levels of O3, respectively. DISCUSSION: We observed considerable modification of the heat effects on cardiovascular and respiratory mortality by elevated levels of air pollutants. Therefore, mitigation measures following the new WHO Air Quality Guidelines are crucial to enhance better health and promote sustainable development.


Asunto(s)
Contaminación del Aire , Enfermedades Cardiovasculares , Exposición a Riesgos Ambientales , Humanos , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire/estadística & datos numéricos , Enfermedades Cardiovasculares/mortalidad , Ciudades/epidemiología , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales , Calor , Mortalidad , Material Particulado/efectos adversos , Material Particulado/análisis , Enfermedades Respiratorias/epidemiología
6.
Front Epidemiol ; 3: 1328188, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38455945

RESUMEN

Background: We evaluated the independent and joint effects of air pollution, land/built environment characteristics, and ambient temperature on all-cause mortality as part of the EXPANSE project. Methods: We collected data from six administrative cohorts covering Catalonia, Greece, the Netherlands, Rome, Sweden, and Switzerland and three traditional cohorts in Sweden, the Netherlands, and Germany. Participants were linked to spatial exposure estimates derived from hybrid land use regression models and satellite data for: air pollution [fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC), warm season ozone (O3)], land/built environment [normalized difference vegetation index (NDVI), distance to water, impervious surfaces], and ambient temperature (the mean and standard deviation of warm and cool season temperature). We applied Cox proportional hazard models accounting for several cohort-specific individual and area-level variables. We evaluated the associations through single and multiexposure models, and interactions between exposures. The joint effects were estimated using the cumulative risk index (CRI). Cohort-specific hazard ratios (HR) were combined using random-effects meta-analyses. Results: We observed over 3.1 million deaths out of approximately 204 million person-years. In administrative cohorts, increased exposure to PM2.5, NO2, and BC was significantly associated with all-cause mortality (pooled HRs: 1.054, 1.033, and 1.032, respectively). We observed an adverse effect of increased impervious surface and mean season-specific temperature, and a protective effect of increased O3, NDVI, distance to water, and temperature variation on all-cause mortality. The effects of PM2.5 were higher in areas with lower (10th percentile) compared to higher (90th percentile) NDVI levels [pooled HRs: 1.054 (95% confidence interval (CI) 1.030-1.079) vs. 1.038 (95% CI 0.964-1.118)]. A similar pattern was observed for NO2. The CRI of air pollutants (PM2.5 or NO2) plus NDVI and mean warm season temperature resulted in a stronger effect compared to single-exposure HRs: [PM2.5 pooled HR: 1.061 (95% CI 1.021-1.102); NO2 pooled HR: 1.041 (95% CI 1.025-1.057)]. Non-significant effects of similar patterns were observed in traditional cohorts. Discussion: The findings of our study not only support the independent effects of long-term exposure to air pollution and greenness, but also highlight the increased effect when interplaying with other environmental exposures.

7.
EBioMedicine ; 84: 104251, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36088684

RESUMEN

BACKGROUND: Identifying how greenspace impacts the temperature-mortality relationship in urban environments is crucial, especially given climate change and rapid urbanization. However, the effect modification of greenspace on heat-related mortality has been typically focused on a localized area or single country. This study examined the heat-mortality relationship among different greenspace levels in a global setting. METHODS: We collected daily ambient temperature and mortality data for 452 locations in 24 countries and used Enhanced Vegetation Index (EVI) as the greenspace measurement. We used distributed lag non-linear model to estimate the heat-mortality relationship in each city and the estimates were pooled adjusting for city-specific average temperature, city-specific temperature range, city-specific population density, and gross domestic product (GDP). The effect modification of greenspace was evaluated by comparing the heat-related mortality risk for different greenspace groups (low, medium, and high), which were divided into terciles among 452 locations. FINDINGS: Cities with high greenspace value had the lowest heat-mortality relative risk of 1·19 (95% CI: 1·13, 1·25), while the heat-related relative risk was 1·46 (95% CI: 1·31, 1·62) for cities with low greenspace when comparing the 99th temperature and the minimum mortality temperature. A 20% increase of greenspace is associated with a 9·02% (95% CI: 8·88, 9·16) decrease in the heat-related attributable fraction, and if this association is causal (which is not within the scope of this study to assess), such a reduction could save approximately 933 excess deaths per year in 24 countries. INTERPRETATION: Our findings can inform communities on the potential health benefits of greenspaces in the urban environment and mitigation measures regarding the impacts of climate change. FUNDING: This publication was developed under Assistance Agreement No. RD83587101 awarded by the U.S. Environmental Protection Agency to Yale University. It has not been formally reviewed by EPA. The views expressed in this document are solely those of the authors and do not necessarily reflect those of the Agency. EPA does not endorse any products or commercial services mentioned in this publication. Research reported in this publication was also supported by the National Institute on Minority Health and Health Disparities of the National Institutes of Health under Award Number R01MD012769. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Also, this work has been supported by the National Research Foundation of Korea (2021R1A6A3A03038675), Medical Research Council-UK (MR/V034162/1 and MR/R013349/1), Natural Environment Research Council UK (Grant ID: NE/R009384/1), Academy of Finland (Grant ID: 310372), European Union's Horizon 2020 Project Exhaustion (Grant ID: 820655 and 874990), Czech Science Foundation (22-24920S), Emory University's NIEHS-funded HERCULES Center (Grant ID: P30ES019776), and Grant CEX2018-000794-S funded by MCIN/AEI/ 10.13039/501100011033 The funders had no role in the design, data collection, analysis, interpretation of results, manuscript writing, or decision to publication.


Asunto(s)
Cambio Climático , Calor , Ciudades , Ambiente , Finlandia , Humanos , Mortalidad
8.
Am J Respir Crit Care Med ; 206(8): 999-1007, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35671471

RESUMEN

Rationale: The associations between ambient coarse particulate matter (PM2.5-10) and daily mortality are not fully understood on a global scale. Objectives: To evaluate the short-term associations between PM2.5-10 and total, cardiovascular, and respiratory mortality across multiple countries/regions worldwide. Methods: We collected daily mortality (total, cardiovascular, and respiratory) and air pollution data from 205 cities in 20 countries/regions. Concentrations of PM2.5-10 were computed as the difference between inhalable and fine PM. A two-stage time-series analytic approach was applied, with overdispersed generalized linear models and multilevel meta-analysis. We fitted two-pollutant models to test the independent effect of PM2.5-10 from copollutants (fine PM, nitrogen dioxide, sulfur dioxide, ozone, and carbon monoxide). Exposure-response relationship curves were pooled, and regional analyses were conducted. Measurements and Main Results: A 10 µg/m3 increase in PM2.5-10 concentration on lag 0-1 day was associated with increments of 0.51% (95% confidence interval [CI], 0.18%-0.84%), 0.43% (95% CI, 0.15%-0.71%), and 0.41% (95% CI, 0.06%-0.77%) in total, cardiovascular, and respiratory mortality, respectively. The associations varied by country and region. These associations were robust to adjustment by all copollutants in two-pollutant models, especially for PM2.5. The exposure-response curves for total, cardiovascular, and respiratory mortality were positive, with steeper slopes at lower exposure ranges and without discernible thresholds. Conclusions: This study provides novel global evidence on the robust and independent associations between short-term exposure to ambient PM2.5-10 and total, cardiovascular, and respiratory mortality, suggesting the need to establish a unique guideline or regulatory limit for daily concentrations of PM2.5-10.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Enfermedades Respiratorias , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Monóxido de Carbono/análisis , China , Ciudades , Polvo , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Humanos , Mortalidad , Dióxido de Nitrógeno , Ozono/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Dióxido de Azufre
9.
Lancet Planet Health ; 6(5): e410-e421, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35550080

RESUMEN

BACKGROUND: Increased mortality risk is associated with short-term temperature variability. However, to our knowledge, there has been no comprehensive assessment of the temperature variability-related mortality burden worldwide. In this study, using data from the MCC Collaborative Research Network, we first explored the association between temperature variability and mortality across 43 countries or regions. Then, to provide a more comprehensive picture of the global burden of mortality associated with temperature variability, global gridded temperature data with a resolution of 0·5°â€ˆ× 0·5° were used to assess the temperature variability-related mortality burden at the global, regional, and national levels. Furthermore, temporal trends in temperature variability-related mortality burden were also explored from 2000-19. METHODS: In this modelling study, we applied a three-stage meta-analytical approach to assess the global temperature variability-related mortality burden at a spatial resolution of 0·5°â€ˆ× 0·5° from 2000-19. Temperature variability was calculated as the SD of the average of the same and previous days' minimum and maximum temperatures. We first obtained location-specific temperature variability related-mortality associations based on a daily time series of 750 locations from the Multi-country Multi-city Collaborative Research Network. We subsequently constructed a multivariable meta-regression model with five predictors to estimate grid-specific temperature variability related-mortality associations across the globe. Finally, percentage excess in mortality and excess mortality rate were calculated to quantify the temperature variability-related mortality burden and to further explore its temporal trend over two decades. FINDINGS: An increasing trend in temperature variability was identified at the global level from 2000 to 2019. Globally, 1 753 392 deaths (95% CI 1 159 901-2 357 718) were associated with temperature variability per year, accounting for 3·4% (2·2-4·6) of all deaths. Most of Asia, Australia, and New Zealand were observed to have a higher percentage excess in mortality than the global mean. Globally, the percentage excess in mortality increased by about 4·6% (3·7-5·3) per decade. The largest increase occurred in Australia and New Zealand (7·3%, 95% CI 4·3-10·4), followed by Europe (4·4%, 2·2-5·6) and Africa (3·3, 1·9-4·6). INTERPRETATION: Globally, a substantial mortality burden was associated with temperature variability, showing geographical heterogeneity and a slightly increasing temporal trend. Our findings could assist in raising public awareness and improving the understanding of the health impacts of temperature variability. FUNDING: Australian Research Council, Australian National Health & Medical Research Council.


Asunto(s)
Biodiversidad , Salud Global , Australia , Ciudades , Femenino , Humanos , Embarazo , Temperatura
10.
Innovation (Camb) ; 3(2): 100225, 2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35340394

RESUMEN

Studies have investigated the effects of heat and temperature variability (TV) on mortality. However, few assessed whether TV modifies the heat-mortality association. Data on daily temperature and mortality in the warm season were collected from 717 locations across 36 countries. TV was calculated as the standard deviation of the average of the same and previous days' minimum and maximum temperatures. We used location-specific quasi-Poisson regression models with an interaction term between the cross-basis term for mean temperature and quartiles of TV to obtain heat-mortality associations under each quartile of TV, and then pooled estimates at the country, regional, and global levels. Results show the increased risk in heat-related mortality with increments in TV, accounting for 0.70% (95% confidence interval [CI]: -0.33 to 1.69), 1.34% (95% CI: -0.14 to 2.73), 1.99% (95% CI: 0.29-3.57), and 2.73% (95% CI: 0.76-4.50) of total deaths for Q1-Q4 (first quartile-fourth quartile) of TV. The modification effects of TV varied geographically. Central Europe had the highest attributable fractions (AFs), corresponding to 7.68% (95% CI: 5.25-9.89) of total deaths for Q4 of TV, while the lowest AFs were observed in North America, with the values for Q4 of 1.74% (95% CI: -0.09 to 3.39). TV had a significant modification effect on the heat-mortality association, causing a higher heat-related mortality burden with increments of TV. Implementing targeted strategies against heat exposure and fluctuant temperatures simultaneously would benefit public health.

11.
Epidemiology ; 33(2): 167-175, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34907973

RESUMEN

BACKGROUND: The association between fine particulate matter (PM2.5) and mortality widely differs between as well as within countries. Differences in PM2.5 composition can play a role in modifying the effect estimates, but there is little evidence about which components have higher impacts on mortality. METHODS: We applied a 2-stage analysis on data collected from 210 locations in 16 countries. In the first stage, we estimated location-specific relative risks (RR) for mortality associated with daily total PM2.5 through time series regression analysis. We then pooled these estimates in a meta-regression model that included city-specific logratio-transformed proportions of seven PM2.5 components as well as meta-predictors derived from city-specific socio-economic and environmental indicators. RESULTS: We found associations between RR and several PM2.5 components. Increasing the ammonium (NH4+) proportion from 1% to 22%, while keeping a relative average proportion of other components, increased the RR from 1.0063 (95% confidence interval [95% CI] = 1.0030, 1.0097) to 1.0102 (95% CI = 1.0070, 1.0135). Conversely, an increase in nitrate (NO3-) from 1% to 71% resulted in a reduced RR, from 1.0100 (95% CI = 1.0067, 1.0133) to 1.0037 (95% CI = 0.9998, 1.0077). Differences in composition explained a substantial part of the heterogeneity in PM2.5 risk. CONCLUSIONS: These findings contribute to the identification of more hazardous emission sources. Further work is needed to understand the health impacts of PM2.5 components and sources given the overlapping sources and correlations among many components.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Material Particulado , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/estadística & datos numéricos , Ciudades/epidemiología , Exposición a Riesgos Ambientales/estadística & datos numéricos , Humanos , Mortalidad , Nitratos/efectos adversos , Material Particulado/análisis , Material Particulado/toxicidad
12.
Lancet Planet Health ; 5(9): e579-e587, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34508679

RESUMEN

BACKGROUND: Many regions of the world are now facing more frequent and unprecedentedly large wildfires. However, the association between wildfire-related PM2·5 and mortality has not been well characterised. We aimed to comprehensively assess the association between short-term exposure to wildfire-related PM2·5 and mortality across various regions of the world. METHODS: For this time series study, data on daily counts of deaths for all causes, cardiovascular causes, and respiratory causes were collected from 749 cities in 43 countries and regions during 2000-16. Daily concentrations of wildfire-related PM2·5 were estimated using the three-dimensional chemical transport model GEOS-Chem at a 0·25°â€ˆ× 0·25° resolution. The association between wildfire-related PM2·5 exposure and mortality was examined using a quasi-Poisson time series model in each city considering both the current-day and lag effects, and the effect estimates were then pooled using a random-effects meta-analysis. Based on these pooled effect estimates, the population attributable fraction and relative risk (RR) of annual mortality due to acute wildfire-related PM2·5 exposure was calculated. FINDINGS: 65·6 million all-cause deaths, 15·1 million cardiovascular deaths, and 6·8 million respiratory deaths were included in our analyses. The pooled RRs of mortality associated with each 10 µg/m3 increase in the 3-day moving average (lag 0-2 days) of wildfire-related PM2·5 exposure were 1·019 (95% CI 1·016-1·022) for all-cause mortality, 1·017 (1·012-1·021) for cardiovascular mortality, and 1·019 (1·013-1·025) for respiratory mortality. Overall, 0·62% (95% CI 0·48-0·75) of all-cause deaths, 0·55% (0·43-0·67) of cardiovascular deaths, and 0·64% (0·50-0·78) of respiratory deaths were annually attributable to the acute impacts of wildfire-related PM2·5 exposure during the study period. INTERPRETATION: Short-term exposure to wildfire-related PM2·5 was associated with increased risk of mortality. Urgent action is needed to reduce health risks from the increasing wildfires. FUNDING: Australian Research Council, Australian National Health & Medical Research Council.


Asunto(s)
Contaminantes Atmosféricos , Incendios Forestales , Contaminantes Atmosféricos/análisis , Australia , Exposición a Riesgos Ambientales , Material Particulado/análisis
13.
Lancet Planet Health ; 5(7): e415-e425, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34245712

RESUMEN

BACKGROUND: Exposure to cold or hot temperatures is associated with premature deaths. We aimed to evaluate the global, regional, and national mortality burden associated with non-optimal ambient temperatures. METHODS: In this modelling study, we collected time-series data on mortality and ambient temperatures from 750 locations in 43 countries and five meta-predictors at a grid size of 0·5°â€ˆ× 0·5° across the globe. A three-stage analysis strategy was used. First, the temperature-mortality association was fitted for each location by use of a time-series regression. Second, a multivariate meta-regression model was built between location-specific estimates and meta-predictors. Finally, the grid-specific temperature-mortality association between 2000 and 2019 was predicted by use of the fitted meta-regression and the grid-specific meta-predictors. Excess deaths due to non-optimal temperatures, the ratio between annual excess deaths and all deaths of a year (the excess death ratio), and the death rate per 100 000 residents were then calculated for each grid across the world. Grids were divided according to regional groupings of the UN Statistics Division. FINDINGS: Globally, 5 083 173 deaths (95% empirical CI [eCI] 4 087 967-5 965 520) were associated with non-optimal temperatures per year, accounting for 9·43% (95% eCI 7·58-11·07) of all deaths (8·52% [6·19-10·47] were cold-related and 0·91% [0·56-1·36] were heat-related). There were 74 temperature-related excess deaths per 100 000 residents (95% eCI 60-87). The mortality burden varied geographically. Of all excess deaths, 2 617 322 (51·49%) occurred in Asia. Eastern Europe had the highest heat-related excess death rate and Sub-Saharan Africa had the highest cold-related excess death rate. From 2000-03 to 2016-19, the global cold-related excess death ratio changed by -0·51 percentage points (95% eCI -0·61 to -0·42) and the global heat-related excess death ratio increased by 0·21 percentage points (0·13-0·31), leading to a net reduction in the overall ratio. The largest decline in overall excess death ratio occurred in South-eastern Asia, whereas excess death ratio fluctuated in Southern Asia and Europe. INTERPRETATION: Non-optimal temperatures are associated with a substantial mortality burden, which varies spatiotemporally. Our findings will benefit international, national, and local communities in developing preparedness and prevention strategies to reduce weather-related impacts immediately and under climate change scenarios. FUNDING: Australian Research Council and the Australian National Health and Medical Research Council.


Asunto(s)
Frío , Calor , Australia , Cambio Climático , Temperatura
14.
Lancet Planet Health ; 5(4): e191-e199, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33838734

RESUMEN

BACKGROUND: Epidemiological evidence on short-term association between ambient carbon monoxide (CO) and mortality is inconclusive and limited to single cities, regions, or countries. Generalisation of results from previous studies is hindered by potential publication bias and different modelling approaches. We therefore assessed the association between short-term exposure to ambient CO and daily mortality in a multicity, multicountry setting. METHODS: We collected daily data on air pollution, meteorology, and total mortality from 337 cities in 18 countries or regions, covering various periods from 1979 to 2016. All included cities had at least 2 years of both CO and mortality data. We estimated city-specific associations using confounder-adjusted generalised additive models with a quasi-Poisson distribution, and then pooled the estimates, accounting for their statistical uncertainty, using a random-effects multilevel meta-analytical model. We also assessed the overall shape of the exposure-response curve and evaluated the possibility of a threshold below which health is not affected. FINDINGS: Overall, a 1 mg/m3 increase in the average CO concentration of the previous day was associated with a 0·91% (95% CI 0·32-1·50) increase in daily total mortality. The pooled exposure-response curve showed a continuously elevated mortality risk with increasing CO concentrations, suggesting no threshold. The exposure-response curve was steeper at daily CO levels lower than 1 mg/m3, indicating greater risk of mortality per increment in CO exposure, and persisted at daily concentrations as low as 0·6 mg/m3 or less. The association remained similar after adjustment for ozone but was attenuated after adjustment for particulate matter or sulphur dioxide, or even reduced to null after adjustment for nitrogen dioxide. INTERPRETATION: This international study is by far the largest epidemiological investigation on short-term CO-related mortality. We found significant associations between ambient CO and daily mortality, even at levels well below current air quality guidelines. Further studies are warranted to disentangle its independent effect from other traffic-related pollutants. FUNDING: EU Horizon 2020, UK Medical Research Council, and Natural Environment Research Council.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedades Cardiovasculares , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Monóxido de Carbono , Ciudades , Humanos
15.
BMJ ; 372: n534, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33762259

RESUMEN

OBJECTIVE: To evaluate the short term associations between nitrogen dioxide (NO2) and total, cardiovascular, and respiratory mortality across multiple countries/regions worldwide, using a uniform analytical protocol. DESIGN: Two stage, time series approach, with overdispersed generalised linear models and multilevel meta-analysis. SETTING: 398 cities in 22 low to high income countries/regions. MAIN OUTCOME MEASURES: Daily deaths from total (62.8 million), cardiovascular (19.7 million), and respiratory (5.5 million) causes between 1973 and 2018. RESULTS: On average, a 10 µg/m3 increase in NO2 concentration on lag 1 day (previous day) was associated with 0.46% (95% confidence interval 0.36% to 0.57%), 0.37% (0.22% to 0.51%), and 0.47% (0.21% to 0.72%) increases in total, cardiovascular, and respiratory mortality, respectively. These associations remained robust after adjusting for co-pollutants (particulate matter with aerodynamic diameter ≤10 µm or ≤2.5 µm (PM10 and PM2.5, respectively), ozone, sulfur dioxide, and carbon monoxide). The pooled concentration-response curves for all three causes were almost linear without discernible thresholds. The proportion of deaths attributable to NO2 concentration above the counterfactual zero level was 1.23% (95% confidence interval 0.96% to 1.51%) across the 398 cities. CONCLUSIONS: This multilocation study provides key evidence on the independent and linear associations between short term exposure to NO2 and increased risk of total, cardiovascular, and respiratory mortality, suggesting that health benefits would be achieved by tightening the guidelines and regulatory limits of NO2.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/efectos adversos , Enfermedades Cardiovasculares/mortalidad , Salud Global/estadística & datos numéricos , Dióxido de Nitrógeno/toxicidad , Enfermedades Respiratorias/mortalidad , Salud Urbana/estadística & datos numéricos , Enfermedades Cardiovasculares/inducido químicamente , Ciudades , Países Desarrollados/estadística & datos numéricos , Países en Desarrollo/estadística & datos numéricos , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Modelos Lineales , Enfermedades Respiratorias/inducido químicamente
17.
Health Aff (Millwood) ; 39(12): 2168-2174, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33284704

RESUMEN

The question of whether, how, and to what extent climate change is affecting health is central to many climate and health studies. We describe a set of formal methods, termed detection and attribution, used by climatologists to determine whether a climate trend or extreme event has changed and to estimate the extent to which climate change influenced that change. We discuss events where changing weather patterns were attributed to climate change and extend these analyses to include health impacts from heat waves in 2018 and 2019 in Europe and Japan, and we show how such impact attribution could be applied to melting ice roads in the Arctic. Documenting the causal chain from emissions of greenhouse gases to observed human health outcomes is important input into risk assessments that prioritize health system preparedness and response interventions and into financial investments and communication about potential risk to policy makers and to the public.


Asunto(s)
Cambio Climático , Tiempo (Meteorología) , Europa (Continente) , Humanos , Japón , Salud Pública , Medición de Riesgo
18.
Int J Epidemiol ; 49(5): 1443-1453, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32954400

RESUMEN

BACKGROUND: While the COVID-19 outbreak in China now appears suppressed, Europe and the USA have become the epicentres, both reporting many more deaths than China. Responding to the pandemic, Sweden has taken a different approach aiming to mitigate, not suppress, community transmission, by using physical distancing without lockdowns. Here we contrast the consequences of different responses to COVID-19 within Sweden, the resulting demand for care, intensive care, the death tolls and the associated direct healthcare related costs. METHODS: We used an age-stratified health-care demand extended SEIR (susceptible, exposed, infectious, recovered) compartmental model for all municipalities in Sweden, and a radiation model for describing inter-municipality mobility. The model was calibrated against data from municipalities in the Stockholm healthcare region. RESULTS: Our scenario with moderate to strong physical distancing describes well the observed health demand and deaths in Sweden up to the end of May 2020. In this scenario, the intensive care unit (ICU) demand reaches the pre-pandemic maximum capacity just above 500 beds. In the counterfactual scenario, the ICU demand is estimated to reach ∼20 times higher than the pre-pandemic ICU capacity. The different scenarios show quite different death tolls up to 1 September, ranging from 5000 to 41 000, excluding deaths potentially caused by ICU shortage. Additionally, our statistical analysis of all causes excess mortality indicates that the number of deaths attributable to COVID-19 could be increased by 40% (95% confidence interval: 0.24, 0.57). CONCLUSION: The results of this study highlight the impact of different combinations of non-pharmaceutical interventions, especially moderate physical distancing in combination with more effective isolation of infectious individuals, on reducing deaths, health demands and lowering healthcare costs. In less effective mitigation scenarios, the demand on ICU beds would rapidly exceed capacity, showing the tight interconnection between the healthcare demand and physical distancing in the society. These findings have relevance for Swedish policy and response to the COVID-19 pandemic and illustrate the importance of maintaining the level of physical distancing for a longer period beyond the study period to suppress or mitigate the impacts from the pandemic.


Asunto(s)
COVID-19 , Control de Enfermedades Transmisibles , Costos de la Atención en Salud/tendencias , Necesidades y Demandas de Servicios de Salud , Mortalidad/tendencias , COVID-19/economía , COVID-19/epidemiología , COVID-19/prevención & control , Control de Enfermedades Transmisibles/métodos , Control de Enfermedades Transmisibles/estadística & datos numéricos , Monitoreo Epidemiológico , Necesidades y Demandas de Servicios de Salud/organización & administración , Necesidades y Demandas de Servicios de Salud/tendencias , Humanos , Modelos Teóricos , Aislamiento de Pacientes , Distanciamiento Físico , SARS-CoV-2 , Suecia/epidemiología
19.
BMJ ; 368: m108, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32041707

RESUMEN

OBJECTIVE: To assess short term mortality risks and excess mortality associated with exposure to ozone in several cities worldwide. DESIGN: Two stage time series analysis. SETTING: 406 cities in 20 countries, with overlapping periods between 1985 and 2015, collected from the database of Multi-City Multi-Country Collaborative Research Network. POPULATION: Deaths for all causes or for external causes only registered in each city within the study period. MAIN OUTCOME MEASURES: Daily total mortality (all or non-external causes only). RESULTS: A total of 45 165 171 deaths were analysed in the 406 cities. On average, a 10 µg/m3 increase in ozone during the current and previous day was associated with an overall relative risk of mortality of 1.0018 (95% confidence interval 1.0012 to 1.0024). Some heterogeneity was found across countries, with estimates ranging from greater than 1.0020 in the United Kingdom, South Africa, Estonia, and Canada to less than 1.0008 in Mexico and Spain. Short term excess mortality in association with exposure to ozone higher than maximum background levels (70 µg/m3) was 0.26% (95% confidence interval 0.24% to 0.28%), corresponding to 8203 annual excess deaths (95% confidence interval 3525 to 12 840) across the 406 cities studied. The excess remained at 0.20% (0.18% to 0.22%) when restricting to days above the WHO guideline (100 µg/m3), corresponding to 6262 annual excess deaths (1413 to 11 065). Above more lenient thresholds for air quality standards in Europe, America, and China, excess mortality was 0.14%, 0.09%, and 0.05%, respectively. CONCLUSIONS: Results suggest that ozone related mortality could be potentially reduced under stricter air quality standards. These findings have relevance for the implementation of efficient clean air interventions and mitigation strategies designed within national and international climate policies.


Asunto(s)
Contaminación del Aire/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Salud Global/estadística & datos numéricos , Mortalidad , Ozono/efectos adversos , Contaminación del Aire/análisis , Ciudades/estadística & datos numéricos , Cambio Climático/mortalidad , Exposición a Riesgos Ambientales/normas , Política Ambiental , Humanos , Cooperación Internacional , Ozono/análisis , Estaciones del Año
20.
Scand J Public Health ; 48(4): 428-435, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30253698

RESUMEN

Aims: The present study aimed to investigate if set thresholds in the Swedish heat-wave warning system are valid for all parts of Sweden and if the heat-wave warning system captures a potential increase in all-cause mortality and coronary heart disease (CHD) mortality. An additional aim was to investigate whether neighbourhood deprivation modifies the relationship between heat waves and mortality. Methods: From 1990 until 2014, in 14 municipalities in Sweden, we collected data on daily maximum temperatures and mortality for the five warmest months. Heat waves were defined according to the categories used in the current Swedish heat-wave warning system. Using a case-crossover approach, we investigated the association between heat waves and mortality in Sweden, as well as a modifying effect of neighbourhood deprivation. Results: On a national as well as a regional level, heat waves significantly increased both all-cause mortality and CHD mortality by approximately 10% and 15%, respectively. While neighbourhood deprivation did not seem to modify heat wave-related all-cause mortality, CHD mortality did seem to modify the risk. Conclusions: It may not be appropriate to assume that heat waves in Sweden will have the same impact in a northern setting as in a southern, or that the impact of heat waves will be the same in affluent and deprived neighbourhoods. When designing and implementing heat-wave warning systems, neighbourhood, regional and national information should be incorporated.


Asunto(s)
Calor/efectos adversos , Mortalidad/tendencias , Características de la Residencia/estadística & datos numéricos , Causas de Muerte/tendencias , Ciudades , Enfermedad Coronaria/mortalidad , Estudios Cruzados , Humanos , Factores de Riesgo , Factores Socioeconómicos , Suecia/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...